Trigonometry

                         

If one angle of a triangle is 90 degrees and one of the other angles is known, the third is thereby fixed, because the three angles of any triangle add up to 180 degrees. The two acute angles therefore add up to 90 degrees: they are complementary angles. The shape of a triangle is completely determined, except for similarity, by the angles. Once the angles are known, the ratios of the sides are determined, regardless of the overall size of the triangle. If the length of one of the sides is known, the other two are determined. These ratios are given by the following trigonometric functions of the known angle A, where a, b and c refer to the lengths of the sides in the accompanying figure:
  • Sine function (sin), defined as the ratio of the side opposite the angle to the hypotenuse.
  • Cosine function (cos), defined as the ratio of the adjacent leg (the side of the triangle joining the angle to the right angle) to the hypotenuse.
  • Tangent function (tan), defined as the ratio of the opposite leg to the adjacent leg.
The hypotenuse is the side opposite to the 90 degree angle in a right triangle; it is the longest side of the triangle and one of the two sides adjacent to angle A. The adjacent leg is the other side that is adjacent to angle A. The opposite side is the side that is opposite to angle A. The terms perpendicular and base are sometimes used for the opposite and adjacent sides respectively.(see below under Mnemonics).
The reciprocals of these functions are named the cosecant (csc), secant (sec), and cotangent (cot), respectively:
The inverse functions are called the arcsinearccosine, and arctangent, respectively. There are arithmetic relations between these functions, which are known as trigonometric identities. The cosine, cotangent, and cosecant are so named because they are respectively the sine, tangent, and secant of the complementary angle abbreviated to "co-".
With these functions, one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines. These laws can be used to compute the remaining angles and sides of any triangle as soon as two sides and their included angle or two angles and a side or three sides are known. These laws are useful in all branches of geometry, since every polygon may be described as a finite combination of triangles.
===============================================================================
Formula sheet of Trigonometry


formula pdf : download
NOW IF YOU ARE SOLVING 
BEST REVISION BOOK OF MATHEMATICS BY ER. SHAMBHU KUMAR BELOW LINK MAY BE USEFUL TO YOU.




1 comment:

  1. I was taking a gander at some of your posts on this site and I consider this site is truly informational! Keep setting up..
    https://trigidentities.info/trig-half-angle-identities/

    ReplyDelete